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Separation of Colloidal Particles from Nonaqueous 
Media by Cross-Flow Electrofiltration 

y. S. LO, D. GIDASPOW, AND D. T. WASAN 
DEPARTMENT OF CHEMICAL ENGINEERING 
ILLINOIS INSTITUTE OF TECHNOLOGY 
CHICAGO, ILLINOIS 60616 

ABSTRACT 

Charge characteristics of p a r t i c l e s  i n  aqueous or  nonaqueous 
s l u r r i e s  are known t o  p lay  an  important  r o l e  i n  so l id s - l i qu id  
sepa ra t ion  processes .  
on f i l t r a t i o n  of c o l l o i d a l  p a r t i c l e s  suspended i n  nonaqueous media, 
such as c o a l  and tar sand s l u r r i e s  based on t h e i r  charge charac te r -  
ist ics.  This  paper p re sen t s  r e s u l t s  of such a s tudy  involving 
cross-flow e l e c t r o f i l t r a t i o n  of nonaqueous s l u r r i e s .  Data are 
repor ted  f o r  ci-A.t20 p a r t i c l e s  suspended i n  t e t r a l i n .  The e f f e c t s  
of feed rate, d r i v i a g  p res su re  and e l e c t r i c a l  f i e l d  s t r e n g t h  on the  
f i l t r a t i o n  r a t e ,  t o t a l  depos i t i on  rate on t h e  c e n t r a l  e l e c t r o d e ,  
and t h e  e f f i c i e n c y  of t h e  f i l t e r  are presented.  

We have been conducting a fundamental s tudy  

The o u t l e t  s l u r r y  concent ra t ions  were measured wi th  a spe- 
c i a l l y  b u i l t  X-ray densi tometer .  
mathematical model us ing  a Graetz-type ana lys i s .  The r a t e  of de- 
p o s i t i o n  was found t o  be determined mainly by t h e  e lectr ic  f i e l d .  
The s ludge f low near  t h e  c e n t r a l  e l ec t rode  s i g n i f i c a n t l y  a f f e c t e d  
t h e  e f f i c i e n c y  of separa t ion .  

These d a t a  are analyzed by a 

INTRODUCTION 

A major problem i n  t h e  development of coa l  l i q u e f a c t i o n  tech- 

nology, and hydrocarbon product ion from t a r  sands and o i l  s h a l e  i s  

t h e  removal of c o l l o i d a l  p a r t i c l e s .  Charge c h a r a c t e r i s t i c s  of 
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1 3 2 4  LO, GIDASPOW, AND WASAN 

p a r t i c l e s  i n  s l u r r i e s  are known t o  p lay  a n  impor tan t  r o l e  i n  s o l i d -  

l i q u i d  s e p a r a t i o n  processes  (1-8). E l e c t r o k i n e t i c  phenomena which 

are induced by a n  e x t e r n a l l y  a p p l i e d  f i e l d ,  may be u t i l i z e d  i n  a n  

improved s e p a r a t i o n  method. 

Lee (9 )  showed how sedimenta t ion  of f i n e  p a r t i c l e s  may be en- 

hanced by t h e  a p p l i c a t i o n  of  a h igh  v o l t a g e  e l e c t r i c  f i e l d .  

cross-f low e l e c t r o f i l t e r  which u t i l i z e d  t h e  e l e c t r o p h o r e t i c  motion 

of t h e  p a r t i c l e s  t o  prevent  f i l t e r  c logging  was invented by 

Gidaspow e t  a l .  (10) .  T h i s  work was d e s c r i b e d  by Lee e t  a l .  (11) 

and cont inued by Liu  (12) .  The cross-f low e l e c t r o f i l t e r  was t e s t e d  

wi th  a s y n t h e t i c  nonaqueous s l u r r y  as w e l l  as w i t h  samples of d i -  

l u t e d  H-coal process  s l u r r i e s .  Liu et  a l .  (13) developed a mathe- 

m a t i c a l  d e s c r i p t i o n  of t h e  corss-f low e l e c t r o f i l t e r  by s o l v i n g  t h e  

Navier-Stokes equat ions  f o r  a n  a n n u l a r  f low w i t h  s u c t i o n  through a n  

o u t e r  porous w a l l .  

A 

The p r e s e n t  work i s  a c o n t i n u a t i o n  of t h i s  nonaqueous s o l i d -  

l i q u i d  s e p a r a t i o n  s tudy .  

flow e l e c t r o f i l t e r  q u a n t i t a t i v e l y .  

which included a measurement of t h e  o u t l e t  s l u r r y  c o n c e n t r a t i o n  by 

means of a s p e c i a l l y  c o n s t r u c t e d  X-ray dens i tometer ,  were obta ined .  

The d e p o s i t i o n  ra te  and t h e  c o n c e n t r a t i o n  d i s t r i b u t i o n  i n  t h e  

f i l t e r  were examined t h e o r e t i c a l l y  u s i n g  a Graetz- type a n a l y s i s  

The o b j e c t i v e  i s  t o  ana lyze  t h e  c ross -  

Extensive performance d a t a ,  

( 1 4 ) .  

EXPERIMENTS 

Cross-Flow F i l t e r  and a n  X-ray Densitometer 

The cross-f low e l e c t r o f i l t r a t i o n  system, shown s c h e m a t i c a l l y  

i n  F igure  1, c o n s i s t e d  of a feed t a n k ,  a s l u r r y  pump, a h igh  v o l t -  
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SEPARATION OF COLLOIDAL PARTICLES 1325 

FIGURE 1. Schematic Block Diagram of Cross-flow E l e c t r o f i l t e r  

age DC power supply,  an  e l e c t r o f i l t e r ,  and an  X-ray densi tometer  

system f o r  measuring t h e  concent ra t ion  of t h e  s l u r r y .  

The f i l t e r  medium of t h e  e l e c t r o f i l t e r  i s  a porous s t a i n l e s s  

steel  tube. 

meters ranging from one t o  twenty microns, served a s  one of t h e  

e l ec t rodes .  A plat inum w i r e ,  which was i n s t a l l e d  t o  pass  through 

t h e  c e n t e r  of t h e  f i l t e r  served as t h e  o the r  e l ec t rode .  The elec- 

t rodes  were housed i n  a steel tube ,  and were insu la t ed  from a l l  

o ther  metal p a r t s  by Teflon.  

t h e  porous tube  and f i l l e d  t h e  annular  space between t h e  ou te r  s h e l l  

and t h e  inne r  porous tube.  

The tube  which w a s  a v a i l a b l e  wi th  average pore d i a -  

The s l u r r y  could be pumped through 

A high enough e l e c t r i c  f i e l d  was 
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1326 LO, GIDASPOW, AND WASAN 

appl ied  t o  cause t h e  p a r t i c l e s  t o  move towards t h e  plat inum wire. 

The s o l i d s  from t h e  s l u r r y  d e p o s i t e d  on t h e  wire, whi le  a clear 

boundary l a y e r  formed along t h e  porous tube.  

a more d e t a i l e d  d e s c r i p t i o n  of t h e  cross-flow f i t t e r .  

Lee, e t  a l . . ( l l )  g i v e  

A Tef lon  t u b e  w i t h  0.2 cm t h i c k  wal l  w a s  connected t o  t h e  

bottom of t h e  f i l t e r .  

d e n s i t y  of e i t h e r  t h e  feed o r  t h e  s l u r r y  e x i t i n g  t h e  e l e c t r o f i l t e r .  

The densi tometer  c o n s i s t s  of a n  200 m C i  Curium-244 source ,  a NaI 

c r y s t a l  s c i n t i l l a t i o n  d e t e c t o r ,  an  a m p l i f i e r ,  a s i n g l e  channel  

a n a l y z e r ,  and a timer-counter. 

An X-ray d e n s i t y  gauge measured t h e  average 

The curium source  has  a 17.8 y e a r s  h a l f - l i f e .  

emissions of t h e  source  are  Pu L X-rays w i t h  photon energy between 

12 and 23 Kev. A t  t h i s  energy l e v e l ,  t h e  v a l u e s  of mass a t tenua-  

t i o n  c o e f f i c i e n t s  f o r  t e t r a l i n  and alumina p a r t i c l e s  are s i g n i f i -  

c a n t l y  d i f f e r e n t .  For t h e  p r e s e n t  system, a maximum count ra te  of 

40,000 counts / sec  could be obta ined .  Other d e t a i l s  of t h e  exper i -  

mental appara tus  are d iscussed  by Lo (15). 

The p r i n c i p a l  

Experimental Condi t ions 

A s y n t h e t i c  s l u r r y  made of t e t r a l i n  and alumina p a r t i c l e s  was 

used i n  t h e s e  experiments. A s u r f a c t a n t ,  Aerosol OT, sodium 

d i o c t y l  s u l f o s u c c i n a t e ,  w a s  used as a d i s p e r s a n t .  

acqui red  a p o s i t i v e  charge.  

measure s p e c i f i c  g r a v i t i e s  of 0.960 t o  0.980. 

p a r t i c l e  concent ra t ion ,  t h e  range  of measurement w a s  0.05 t o  2.4 

percent  of s o l i d s  by weight. 

f e e d s  w a s  1.0 w t . % .  The o u t l e t  c o n c e n t r a t i o n s  were measured f o r  

The p a r t i c l e s  

The d e n s i t y  gauge was c a l i b r a t e d  t o  

I n  terms of a s o l i d  

The p a r t i c l e  c o n c e n t r a t i o n  of a l l  
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SEPARATION OF COLLOIDAL PARTICLES 1327 

various feed rates and vol tages .  Experimental da t a  were taken over 

a period of 30 minutes. 

Table 1. 

The p rope r t i e s  of t h e  system are shown i n  

The purpose of t h e  f i r s t  s e r i e s  of experiments was t o  f ind  the  

depos i t ion  r a t e  of p a r t i c l e s  onto t h e  c e n t r a l  e lec t rode .  

t o  examine t h e  e f f e c t  of t he  electromotive fo rce  on p a r t i c l e  de- 

pos i t i on ,  no l i qu id  was withdrawn from t h e  s h e l l  s i d e  of the f i l t e r .  

Experiments were conducted f o r  var ious  feed rates and pressure  drops 

ac ross  t h e  f i l t e r  tube with the  f i e l d  s t r eng th  above t h e  cri t ical  

value needed t o  obta in  a c l e a r  f i l t r a t e .  I n  order t o  make su re  

t h a t  a clear boundary layer  ex is ted .  a t u r b i d h a t e r  was used t o  

measure t h e  t u r b i d i t y  of t h e  f i l t r a t e .  

I n  order 

Experimental Results and Discussions 

Figure 2 shows t h e  v a r i a t i o n  of a steady s t a t e  o u t l e t  concen- 

t r a t i o n  with feed r a t e  when t h e r e  was no f i l t r a t e  removed. The 

o u t l e t  concentrations were c l o s e  t o  the  i n l e t  concentration for 

t hese  runs with high feed rates or low applied vol tages .  The 

TABLE 1. 

Proper t ies  of a-At203, T e t r a l i n  System 

I n l e t  Sol ids  Concentration: 
Average P a r t i c l e  Diameter: 
Density of t h e  Slurry a t  25OC: 
Aerosol OT Concentration: 
Elec t rophore t ic  Mobility: 
Bulk Conductivity of t h e  Suspension: 
Viscosity of t h e  Te t r a l in :  
D ie l ec t r i c  Constant of Te t r a l in :  

1.0 w t . X  
0.3 pm 
0.971 g m / m l  
4.0 gml l i t e r  
0.05 urn sec/V/cm 
1.4x10-' mho/m 
0.00224 Pa-Sec 
2.7 
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1328 LO, GIDASPOW, AND WASAN 

F I L T R A T I O N  RATE = 0 

FIGURE 2. Dimensionless Out le t  Concentrat ion vs .  Feed Rate 

dimensionless  con tac t  time def ined i n  F igure  3 I s  propor t iona l  t o  

the  va lue  of f i l t e r  l eng th  (L) d iv ided  by t h e  average v e l o c i t y  

(Urn). For ze ro  con tac t  time, t h e  o u t l e t  concent ra t ion  should be 

equal  t o  t h e  i n l e t  concent ra t ion .  The d e r i v a t i v e s  of t hese  curves  

can be used t o  c a l c u l a t e  t h e  rate of depos i t ion .  

discussed la te r .  

This  w i l l  be 

Figure 4 shows t h e  e f f i c i e n c i e s  of t h e  f i l t e r .  They were cal- 

cu la t ed  from t h e  t o t a l  weight of p a r t i c l e s  i n  t h e  i n l e t  and o u t l e t  

streams. These d a t a  can a l s o  be used t o  ob ta in  t h e  t o t a l  deposi- 
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FIGURE 3. Dimensionless Outlet  Concentration vs.  Contact Time 

t i o n  r a t e  by a ma te r i a l  balance. Figures 5 and 6 show the  e f f e c t  

of f i e l d  s t r eng th  and feed r a t e  on the  t o t a l  depos i t ion  r a t e .  

r a t e s  of depos i t ion  approach a constant when t h e  feed r a t e  i s  high. 

The 

Figure 7 shows t h e  o u t l e t  concentration as a func t ion  of feed 

rate with var ious  f r ac t ions  of f i l t r a t e  removed. These da t a  show 

t h a t  as much a s  70% of the  feed can be removed as a c l e a r  l i qu id .  

The f igu re  a l s o  shows t h a t  although t h i s  device is very e f f i c i e n t  

f o r  producing a c l e a r  f i l t r a t e ,  i t  does not a c t  as a good concen- 
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t r a t o r  of t h e  feed.  

a s  a sepa ra t e  stream. 

This  sugges ts  t h a t  t h e  s ludge l aye r  be  removed 

Experimental d a t a  f o r  test  times longer  than  30 minutes ind i -  

ca ted  t h a t  t h e  o u t l e t  concent ra t ion  became uns t ab le  as t h e  depos i t  

on t h e  wire grew and was sheared o f f .  

f i l t r a t i o n  runs  are not  presented.  

Therefore  d a t a  f o r  longer  

THEORETICAL MODEL 

As shown i n  t h e  experimental  s tudy ,  a c l e a r  p a r t i c l e - f r e e  f i l -  

t ra te  w a s  obtained a t  vo l t ages  g r e a t e r  than  the  c r i t i ca l  vo l t age .  
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A c l e a r  boundary l aye r  formation is expected t o  occur under these  

condi t ions .  The ob jec t ive  of t h i s  t h e o r e t i c a l  s tudy  is t o  develop 

a mathematical model which desc r ibes  the  concent ra t ion  d i s t r i b u t i o n  

i n  t h e  cross-flow e l e c t r o f i l t e r .  The present  work improved the  

previous models (11-13) by us ing  a Graetz-type ana lys i s ,  i n  which 
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1334 LO, GIDASPOW, AND WASAN 

t h e  l o c a l  d e p o s i t i o n  ra te  i s  obta ined  by making s u i t a b l e  measure- 

ments of t h e  mixing-cup c o n c e n t r a t i o n  a l o n e ,  wi thout  making any 

p r i o r  assumptions about  t h e  form of t h e  rate f u n c t i o n .  

d e s c r i b i n g  t h e  s ludge  l a y e r  were a l s o  included i n  t h i s  model. 

Equations 

F i g u r e  8 i l l u s t r a t e s  t h e  geometry of t h e  t u b u l a r  cross-f low 

e l e c t r o f i l t e r .  

c e n t e r  of t h e  c r o s s  s e c t i o n ,  x i s  taken  i n  t h e  d i r e c t i o n  of  f low 

and r is t h e  r a d i a l  d i r e c t i o n .  The a n n u l a r  r e g i o n  i s  bounded by 

t h e  two c o n c e n t r i c  t u b e s  of r a d i i  r and r . u i s  t h e  axial 

v e l o c i t y  a t  t h e  i n l e t  of t h e  f i l t e r  tube ,  and vw is  t h e  withdrawal  

v e l o c i t y  a t  t h e  f i l t e r  w a l l .  

annulus  from Gauss' l a w  c a n  b e  shown t o  b e  as fo l lows .  

I n  c y l i n d r i c a l  c o o r d i n a t e s  wi th  t h e  o r i g i n  a t  t h e  

i o m  

The e lec t r ic  f i e l d  s t r e n g t h  i n  a n  

1 
En (ro/r i )  r 

E =  'a . -  

where V is  t h e  a p p l i e d  v o l t a g e  a c r o s s  t h e  f i l t e r .  a 

FIGURE 8. Tubular  Cross-Flow E l e c t r o f i l t e r  
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SEPARATION OF COLLOIDAL PARTICLES 1335 

To develop a mathematical model descr ib ing  t h e  behavior of t h e  

f i l t e r  , 

1. 

2. 

3. 

4. 

5 .  

6. 

t h e  following assumptions were made: 

A steady state operation. 

Uniform sludge layer  on t h e  c e n t r a l  e lec t rode  as observed. 

Ful ly  developed ve loc i ty  p r o f i l e s  ou ts ide  t h e  sludge layer .  

Uniform withdrawal ve loc i ty  a t  t h e  porous wall .  

Negligible longi tudina l  d i f f u s i o n  due t o  a high Pec le t  

number. 

Constant phys ica l  and t r anspor t  p roper t ies .  

As shown i n  Figure 9,  r is t h e  r ad ius  of t he  sludge l aye r ,  
8 

which can be measured experimentally. 

r a t e  on t h e  sludge l aye r .  

ra i s  t h e  l o c a l  depos i t ion  

Only a por t ion  of those  p a r t i c l e s  which 

F I L T C b  
WALL 

CLEAR 
EOUNDRY 
LAYER 

/ 
SLUDGE 
LAYER 

I 
CENTRAL 

ELECTRODE 

fr = 

FIGURE 9 .  Material Balance of t h e  Sludge Layer 
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1336 LO, GIDASPOW, AND WASAN 

depos i t  on the  sludge l aye r  w i l l  a c t u a l l y  deposit  on the  e lec t rode  

with a rate of rb. The o ther  p a r t i c l e s  w i l l  be sheared off as t h e  

S l '  
sludge flows with an average ve loc i ty ,  u and concentration, c 

Therefore r can be r e l a t e d  t o  r and u by making t h e  material 

balance: 

S l  

a b S l  

The mass balance on t h e  p a r t i c l e s  ou ts ide  t h e  sludge layer  re- 

s u l t s  i n  the  following par t ia l  d i f f e r e n t i a l  equation 

a(uc> + 1 2  [ r . ( ~  - m.E).c - D.rm-1 ac = 0 
ax r ar ar 

where u,  v a r e  t h e  axial ve loc i ty  and t h e  t ransverse  

(3 1 

ve loc i ty ,  res- 

pec t ive ly  (13), EM i s  t h e  e l ec t rophore t i c  mobili ty,  and D t he  d i f -  

fus ion  coe f f i c i en t .  

The boundary condi t ions  f o r  t h i s  system a r e  

B.C. 

B.C. 

B.C. 

1. 

2. 

3.  

Constant i n l e t  concentration 

c(O,r)  = co (4) 

Mater ia l  balance on p a r t i c l e s  a t  t h e  sur face  

of c e n t r a l  e l ec t rode  

( 5 )  
3C r a = (FM-E - v)*cIrDr + D = I r z r s  

s 

where t h e  rate of depos i t ion  can be ca lcu la ted  

from t h e  experimental da ta .  

A leaky condition a t  t h e  f i l t e r  wall  
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SEPARATION OF COLLOIDAL PARTICLES 1337 

where t h e  parameter K w a s  defined as t h e  r a t i o  

of p a r t i c l e  ve loc i ty  t o  bulk ve loc i ty  by Liu 

et  a l .  (13). -- 
The governing equation and t h e  boundary conditions were con- 

ver ted  

C 

U 

- 
r 

t o  dimensionless form using t h e  following d e f i n i t i o n s :  

C 

C 
I- 

0 

U 
U 

L -  

m 

r 
r 

- -  
0 

sc = JL 
PD 

v p v  
V 

W 

X I - = - . - . -  L*D L Dh 1 
2 ro ro Re*Sc u r  m o  

P * Dh 
R e  = - u 

r v  

D 
o w  a = -  

EM*Va r 
r 

k - 2  
0 

' = D*ln (ro/ri) 

2 
csl'usl (k: - k 1 

p P - .  
o m  2ks c *U 

Then t h e  dimensionless equations are 

Ra - R,,' k T;-+- d f  d X  s 

and 
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1338 LO, GIDASPOW, AND WASAN 

The dimensionless boundary condi t ions  become 

B.C. 1. C(0, F) = 1 

Before t h i s  p a r t i a l  d i f f e r e n t i a l  equation can be solved, t he  r a t e  

of depos i t ion  i n  t h e  second boundary condi t ion  must be ca lcu la ted .  

Rate of Deposition 

I n  order t o  i s o l a t e  t h e  e f f e c t  of t h e  t r ansve r se  ve loc i ty  i n  

t h e  f i l t e r  tube,  a flow through t h e  f i l t e r  wi th  no f i l t r a t e  with- 

drawal from t h e  s h e l l  s i d e  is considered f i r s t .  

I n t eg ra t ion  of equation (16) with respec t  t o  r from k t o  1 
S 

y i e l d s  

(1 - k i )  d Cm .- + k s  * R a - O  2 d X  

and 
( 1  - k:) d Cm .- 

d X  R, = - 
2kS 

where t h e  mixing-cup concent ra t ion  C is defined as m 

= 2  C(X,F)(l-F2+B*lln r) r d r  (22) 
4 

cm (l-ks) (l+k;-B) ks 

This can be  r e l a t e d  t o  t h e  dimensionless o u t l e t  concent ra t ion ,  C E ,  

which corresponds t o  t h e  experimental measurement, and t h e  sludge 

flow by making an o v e r a l l  ma te r i a l  balance: 
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SEPARATION OF 

CE'?T(l - 

Theref o re  

COLLOIDAL PARTICLES 

2 -2 k2) = [ C(X,T) 7 [l - r + B-kn ;1*2?~T*dF 
1 

8 l+ks-B 

2kS cm = CE - P' - 
(1-k2) 

o r  

d C  d C E  d P  2k 

d X d X d X (1-k2) 
-m= - - - .8 

P is defined as 

C s l  usl p = - .  
c u  2k.s o m  

(k: - k2) 

1339 

and i s  a l s o  r e l a t e d  t o  t h e  depos i t ion  r a t e  Ra from equation (15): 

d P  - = Ra [ l  - 

where (%* k)/(Ra*ks) i s  t h e  r a t i o  of p a r t i c l e s  which a c t u a l l y  de- 

pos i t  on t h e  e lec t rode  t o  those  which depos i t  on the  sludge l aye r .  

This r a t i o  can be defined a s  a r e t en t ion  f a c t o r ,  Fr. The f r a c t i o n  

of t h e  p a r t i c l e s  which depos i t  on the  sludge layer  and are then 

sheared off t o  cont r ibu te  t o  t h e  o u t l e t  concentration i s  thus  de- 

signated by (l-Fr). 

Although ne i ther  Ra nor % is known, t h e i r  r a t i o  can b e  ob- 

ta ined  by comparing t h e  o u t l e t  concentrations from t h e  experimental 
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1340 LO, GIDASPOW, AND WASAN 

data  with those of two l imi t ing  cases.  

no deposit ion a t  a l l ,  although high vol tages  a r e  applied.  

F 

t i o n  r a t e  can be obtained from a material balance. The second 

I n  t h e  f i r s t  case  the re  is 

Hence, 

equals zero and the  o u t l e t  concentration as a function of f i l t r a -  r 

l imi t ing  case  i s  t h a t  f l ux  of p a r t i c l e s  induced by t h e  e l e c t r i c  

f i e l d i s b a l a n c e d  by t h e r a t e  of deposit ion.  In  t h i s  case  a l l  t he  de- 

posited p a r t i c l e s  a r e  re ta ined  on t h e  e lec t rode .  Therefore R is 

t he  same a s  I$, and F equals 1. 

is between these  two l imi t ing  cases.  

defined a s  

a 

The a c t u a l  behavior of t he  f i l t e r  r 
The r e t e n t i o n  f a c t o r  can be 

1, C2, C where C 

second l imi t ing  cases ,  and the  experimental measurement, respect-  

ive ly .  Once F is known, equations ( 2 5 )  and ( 2 7 )  can be subs t i -  

are the  o u t l e t  concentrations of t he  f i r s t  and 3 

r 
tu ted  i n t o  equation (21). Then 

- (1 - k:) 
'E 2kS .- 

d X  R =  

Thus, equation ( 2 9 )  may be used t o  r e l a t e  t he  depos i t ion  r a t e  R a 

t o  the  measured o u t l e t  concentration CE as a func t ion  of contact 

t i m e ,  X. 

S imi la r ly ,  when t h e r e  is a f i l t r a t e  withdrawal from the  f i l t e r ,  

t h e  depos i t ion  rate R can be obtained as follows: 
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0.0006 

5 0.0005 
N- 

1341 

2 

* 

. 

(1 - k") . 

z 
0 0.0002 

4 0.0001 

k 

0 

Equation (29) is just a special case of equation (30) when a equals 

zero. 

Equations (16) through (19) were solved numerically using a 

Crank-Nicholson finite difference method. 

. 

* 

I I I I I 

Results and Discussion 

The calculated deposition rates as a function of contact time 

are shown in Figure 10. In this case, no filtrate was removed in 

I 
m - 

0.0004 

r- 

FIGURE 10. Deposition Rate vs. Dimensionless Contact Time 
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1342 LO, GIDASPOW, AND WASAN 

order  t o  o b t a i n  t h e  d e p o s i t i o n  rate on t h e  c e n t r a l  e l e c t r o d e .  

expected, t h e  d e p o s i t i o n  rate i n c r e a s e s  w i t h  a n  i n c r e a s e  i n  v o l t a g e  

and is maximum near  t h e  i n l e t .  

A s  

The e f f e c t  of t h e  f r a c t i o n  of t h e  clear f i l t r a t e  removed on 

t h e  mixing-cup c o n c e n t r a t i o n  i s  shown i n  F igure  11. 

drawal v e l o c i t y  becomes h i g h e r ,  t h e  concent ra t ion  i n c r e a s e s ,  bu t  

t h e  th ickness  of t h e  clear boundary l a y e r  d e c r e a s e s ,  as shown i n  

Figure 12 .  The c r i t i c a l  f i e l d  s t r e n g t h ,  a t  which t h e  clear bound- 

a r y  l a y e r  i s  j u s t  about  t o  be formed, can be obta ined ,  as shown i n  

Figure 13. 

rates f o r  v a r i o u s  f i e l d  s t r e n g t h s  can b e  obtained from t h e  c l e a r  

boundary l a y e r  th ickness .  

When t h e  with- 

F igures  14 and 15  show t h a t  t h e  m a x i m u m  f i l t r a t i o n  

Jixperimental d a t a  are lower than  t h e  

3000 v (Re = 48) 
FRACTION OF CLEAR 

0.2 0.4 t 
0.000 1 5 0.00005 0.M)OOl 

DIMENSIONLESS CONTACT TIME, (k-’(&.) 
FIGURE 11. E f f e c t  of F i l t r a t i o n  Veloc i ty  on t h e  Mixing-cup 

Concentrat ion 
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W 

2 
-I 

> -  a 'f a, a -  z 
3 
0 

0.8 

5 
0.6 

Re = 85 

- 
- 

FIGURE 1 2 .  Ef fec t  of F i l t r a t i o n  Velocity on the  Clear Boundary 
Layer Thickness 

t h e o r e t i c a l  va lues ,  because it i s  d i f f i c u l t  t o  opera te  under ex- 

a c t l y  c r i t i c a l  conditions.  It may a l s o  be caused by a d i s t o r t i o n  

of t h e  e l e c t r i c  f i e l d  due t o  t h e  sludge l aye r ,  e spec ia l ly  a t  high 

f i e l d  s t rengths .  

Figure 16 shows the  f l u x  a s  a func t ion  of t he  dimensionless 

The f l u x  is expressed i n  terms of two d r iv ing  forces  contac t  time. 

namely t h e  electric f i e l d  and t h e  concentration gradien t  as shown 

below. 

Flux EM'E*cw - k (C -C ) m w m  

Where cw i s  t h e  estimated w a l l  concentration from t h e  experimental- 

l y  determined o u t l e t  concentration, c and k t h e  mass t r a n s f e r  

coe f f i c i en t .  Since I n  t h i s  system the  value of t h e  e l e c t r i c  f i e l d  

m' m 
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Re = a5 

FRACTION OF CLEAR 
F I L T R A T E  REMOVE0 

0% 
20% 
3 0% 

2000 4000 6000 8000 
VOLTAGE ( V )  

FIGURE 13. Effect of Field Strength on the Clear Boundary Layer 
Thickness for Three Different Filtration Velocities 
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(Re  = 48) 
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1 

FIGURE 14. Thickness of Clear Boundary Layer VB. Filtration Rate 
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FIGURE 15. Effect of Field Strength on Maximum Filtration Rate 
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13Gh LO, GIDASPOW, AND WASAN 

0.0001 
-.__.- - - - - 

-- -.- - - -. - 
D 

DIMENSIONLESS CONTACT TIME, (k) ($) I&) 
Re'  Sc 

FIGUKE 16.  Flux on t h e  Surface  of Sludge Layer v s .  Contact  T i m e  

i s  l a r g e ,  t h i s  f i g u r e  shows t h a t  t h e  g r e a t e s t  c o n t r i b u t i o n  t o  t h e  

f l u x  i s  due t o  t h e  imposed e l e c t r i c  f i e l d .  

t h e  c a l c u l a t e d  mass t r a n s f e r  c o e f f i c i e n t  as a f u n c t i o n  of t h e  v o l t -  

age  and t h e  d imens ionless  c o n t a c t  t i m e .  As expec ted ,  t h e  mass 

t r a n s f e r  c o e f f i c i e n t  i s  h i g h e s t  a t  t h e  h igher  f low rate  and is 

p r a c t i c a l l y  independent of t h e  a p p l i e d  v o l t a g e .  

F i g u r e  17 is a p l o t  of 

F igure  18 shows a p l o t  of t h e  o u t l e t  c o n c e n t r a t i o n  as a func- 

t i o n  of t h e  Reynolds number i n  t h e  e l e c t r o f i l t e r .  It is evident  

t h a t  a t  very h igh  v e l o c i t i e s  t h e r e  is  p r a c t i c a l l y  no s ludge  l a y e r  

formation.  However, a t  more p r a c t i c a l  c o n d i t i o n s ,  t h e  e f f e c t  of 

t h e  s ludge l a y e r  becomes a p p r e c i a b l e .  Such d a t a  sugges t  a g a i n  t h a t  

t h e  s ludge  l a y e r  should be s e p a r a t e l y  removed. 
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FIGURE 1 7 .  Mass Transfer Coefficient vs .  Contact Time 
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FIGURE 18. Comparison of the Calculated Mixing-cup Concentration 
with the Experimental Data 
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Conclusions 

LO, GIDASPOW, AND WASAN 

1. 

2 .  

3 .  

The s p e c i a l l y  cons t ruc ted  X-ray dens i tometer  made i t  p o s s i b l e  

t o  o b t a i n  a c c u r a t e  v a l u e s  of s ludge  c o n c e n t r a t i o n s  as a func- 

t i o n  of c o n t a c t  t i m e .  These d a t a  were t h e n  used t o  o b t a i n  

l o c a l  d e p o s i t i o n  rates u s i n g  a Graetz  t y p e  a n a l y s i s .  Unfortu- 

n a t e l y  t h e  motion of t h e  s ludge  l a y e r  g r e a t l y  complicated t h e  

problem. 

It was found t h a t  t h e  main d r i v i n g  f o r c e  f o r  p a r t i c l e  s e p a r a t i o n  

was t h e  imposed h igh  v o l t a g e  e lectr ic  f i e l d .  As expected,  t h e  

mass t r a n s f e r  c o e f f i c i e n t  w a s  h i g h e s t  a t  h i g h e s t  f low rate and 

was p r a c t i c a l l y  independent of t h e  a p p l i e d  vol tage .  

The r e t e n t i o n  f a c t o r ,  which r e p r e s e n t s  t h e  f r a c t i o n  of p a r t i c l e  

r e t a i n e d  on t h e  e l e c t r o d e  is a f f e c t e d  by t h e  e lectr ic  f i e l d  

s t r e n g t h  and t h e  Reynolds number. 

f o r  modifying t h e  appara tus  by withdrawing a s l u d g e  continuous- 

ly t o  achieve  a n  optimum s e p a r a t i o n  of t h e  s l u r r y  i n t o  a clear 

l i q u i d  and a h i g h l y  concent ra ted  s ludge.  

The d a t a  suggested t h e  need 
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